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Abstract

This paper considers the problem of the second-moment stabilisation of a scalar linear
plant with process noise. It is assumed that the sensor communicates with the controller
over an unreliable channel, whose state evolves according to a Markov chain, with the tran-
sition matrix on a timestep depending on whether there is a transmission on that timestep.
Under such a setting, an event-triggered transmission policy is proposed which meets the
objective of exponential convergence of the second moment of the plant state to an ulti-
mate bound. Further, upper bounds on the transmission fraction of the proposed policy
are provided. The results are illustrated through an example scenario of control in the pres-
ence of a battery-equipped energy-harvesting sensor. The proposed control design as well
as the analytical guarantees are verified through simulations for the example scenario.

1 INTRODUCTION

In the literature, the problem of control over time-varying
action-dependent channels has been understudied. This paper
addresses this gap using the approach of event triggering for
controlling a scalar linear system over an unreliable action-
dependent Markov channel.

1.1 Literature review

Last two decades have seen extensive research on various
issues and design methods in networked control systems (NCS)
[1–4]. One such area is event-triggered control [5–9], which has
been applied in numerous contexts for various control goals.
However, the volume of work on event-triggered control in a
stochastic setting is still not as considerable as in the determin-
istic setting. Some early works in the stochastic setting include
[10–13]. Several papers that consider event-triggered transmis-
sions under stochastic packet drops exist in the context of esti-
mation [14], linear quadratic Gaussian (LQG) control [15–17],
non-linear systems [18], multi-loop control of linear systems [19,
20] and stabilisation [21–23]. However, these works consider
only independent and identically distributed (i.i.d.) packet drops.
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An exception in the works on event-triggered control is our pre-
vious paper [24], which considers Markov packet drops.

Even in the literature on NCS, a very common assumption
is that the packet drops are i.i.d. across time. However, in order
to better capture time-correlation effects in networks, there has
been recent consideration of packet-drop probabilities evolv-
ing according to a Markov chain. Some recent works consid-
ering Markov packet drops include stability of Kalman filter-
ing over networks [25, 26], channel selection for control of
multi-loop non-linear systems [27], and mean-square stabilisa-
tion with quantised feedback [28, 29]. Beyond packet drops,
some other works on NCS with Markovian channels include
[30] for Kalman filtering with Markov inter-reception times,
control under Markov missing data [31], mean-square stabili-
sation with the channel data rate evolving as a Markov chain
[32] and over a noisy fading channel where the evolution of fad-
ing gain is Markovian [33, 34] as well as in the context of con-
trol over vehicular ad hoc networks [35, 36] (see also references
therein).

In the literature on communication systems, Markov mod-
els for channels have a long history, starting with the works
of Gilbert [37] and Elliott [38]. Reference [39] is a relatively
recent survey on Markov modelling of fading channels. Chan-
nels whose properties depend on past actions also serve as
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useful models for communication systems as well as for other
applications. Some examples in the communication literature
include [40], which considers streaming in buffer-enabled wire-
less networks, and [41], which is on communication in under-
water acoustic channels. Action-dependent Markov processes
also model systems of other communication channels. Refer-
ence [42] is a recent survey on models and research works on
systems whose operation depends on a ‘utilisation-dependent
component’ such as queueing in action-dependent servers [43],
iterative learning algorithms and systems with energy-harvesting
(EH) components, among other applications. Reference [44]
considers a communication system powered by an EH battery,
modelled as an action-dependent Markov channel. This model
shares significant conceptual commonality with the model we
use for simulations in Section 6.

1.2 Contributions

The major contributions of this paper are as follows.

∙ We consider the problem of second-moment stabilisation
over a channel with action-dependent Markov packet drops.
To the best of our knowledge, such channels have not been
considered before in the context of NCS. For example, the
works [28, 29] consider Markov packet drops without depen-
dence on past transmission actions. We provide a necessary
condition on the plant dynamics and the channel parameters
for our transmission policy to achieve the control objective.
This necessary condition is similar to the conditions often
found in the data rate limited control [45] and NCS in gen-
eral.

∙ The proposed event-triggered transmission policy is similar
in spirit to our earlier work [21, 24]. However, [21] consider
only i.i.d. Bernoulli packet drops and [24] consider Markov
packet drops. In contrast, here we consider action-dependent
Markov packet drops, which results in a coupling of the evo-
lution of the plant and channel states. This aspect makes
the analysis necessary for providing theoretical guarantees on
performance significantly more challenging. In particular, the
two main analytical contributions in this part are theoreti-
cal guarantee on the second-moment stability and an upper
bound on the fraction of timesteps, over a time horizon, on
which a transmission occurs under the event-triggered policy.

∙ We model the problem of control with a battery-equipped
EH sensor using the proposed action-based Markov chan-
nel framework and illustrate our proposed event-triggered
policy and results through simulations. This example also
demonstrates the wider applicability of our model, beyond
the problem of control over wireless communication
channels.

1.3 Notation

We letℝ,ℤ,ℕ andℕ0 denote the sets of real numbers, integers,
natural numbers and non-negative integers, respectively. We use

FIGURE 1 Schematic of the system under consideration

the standard font for scalar quantities while boldface for vectors
and matrices. The notations 1, 𝛿𝛿𝛿i and I denote the vector with
all 1s, the vector whose ith entry takes the values 1 and 0 every-
where else, and the identity matrix, respectively, of appropriate
dimensions. We use 𝝆(A) to denote the spectral radius of a real
square matrix A. We denote the space of probability vectors (i.e.
vectors with non-negative entries that sum to 1) of n dimensions
asℙn. The notation Pr[⋅] denotes the probability of an event. We
denote a generic transmission policy using  , and 𝔼 [ ] repre-
sents expectation of a random variable under a given transmis-
sion policy  . We denote the cardinality of a finite set  as ||.
For integers a and b, we let that [a, b]ℤ, (a, b)ℤ and (a, b]ℤ rep-
resent the finite sets [a, b] ∩ ℤ, (a, b) ∩ ℤ and (a, b] ∩ ℤ, respec-
tively. For random variables X , Y and Z , the tower property of

conditional expectation is

𝔼[ 𝔼[X |Y, Z ] |Y ] = 𝔼[X |Y ].

2 SYSTEM DESCRIPTION

In this section, we describe the plant, channel, controller and
the control objective. A schematic of the system is provided in
Figure 1.

2.1 Plant and controller model

Consider a scalar linear plant with process noise

xk+1 = axk + uk + vk, xk, uk, vk ∈ ℝ, ∀k ∈ ℕ0. (1)

The parameter a is the inherent gain of the plant, which we
assume is unstable, that is, |a| > 1. The variables xk, uk and
vk are the plant state, the control input and the process noise,
respectively, at timestep k ∈ ℕ0. We assume that vk is i.i.d.
across timesteps k and independent of all the other system vari-
ables. Its distribution has zero mean and finite variance, that is,
𝔼[vk] = 0, 𝔼[v2

k
] =: M < ∞.

At each timestep, a sensor perfectly measures the plant state
and decides on whether to transmit a packet to the controller.
The sensor’s transmission decision on timestep k is tk, where

tk :=

{
1, if sensor transmits at k

0, if sensor does not transmit at k.
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The sensor determines tk at each timestep k according to an
event-triggered transmission policy on the basis of plant state and
all the information available on timestep k. Even if the sen-
sor transmits a packet at timestep k (tk = 1), the packet may be
dropped by the communication channel according to a packet-
drop model which we describe in Section 2.2. We let rk be the
reception indicator:

rk :=

⎧⎪⎪⎨⎪⎪⎩
1, if tk = 1 and packet received

0, if tk = 1 and packet dropped

0, if tk = 0.

The controller uses the controller state, x̂+
k

, to generate the
input uk := Lx̂+

k
, where L is such that ā := (a + L) ∈ (−1, 1).

The controller state x̂+
k

itself evolves as

x̂+
k
=

{
xk, if rk = 1

x̂k, if rk = 0,
(2)

where x̂k := āx̂+
k−1 is the estimate of the plant state given past

data. Corresponding to the controller state and plant state esti-
mates, we define the estimation error zk and controller state error z+

k
as

zk := xk − x̂k, z+
k

:= xk − x̂+
k
. (3)

The two quantities differ only on successful reception times. It
is possible to write the plant state evolution as

xk+1 = axk + Lx̂+
k
+ vk = āxk − Lz+

k
+ vk, (4a)

x̂k+1 = āx̂+
k
. (4b)

Equations (2)–(4) compositely describe the evolution of
the plant state, controller state and the estimate of plant
state.

2.2 Channel model

We model the communication channel as an action-dependent
finite state–space Markov channel. The channel can be in one among
a finite number of states on each timestep. The state of the
channel on a given timestep describes the quality of service it
provides. Here, the channel state on a timestep determines the
packet-drop probability on that timestep. We denote the channel

state at timestep k by 𝛾k ∈ {1,… , n}, with n a finite positive inte-
ger. We assume that the probability distribution of 𝛾k+1 depends
on 𝛾k and tk, the transmission decision on timestep k. Thus, the
evolution of the channel is an action-dependent Markov pro-
cess. We let p

(0)
i j and p

(1)
i j denote the probabilities of the channel

state transitioning from j to i given tk is equal to 0 and 1, respec-
tively. Thus,

p
(0)
i j

:= Pr
[
𝛾k+1 = i | 𝛾k = j, tk = 0

]
,

p
(1)
i j := Pr

[
𝛾k+1 = i | 𝛾k = j, tk = 1

]
.

We let P0 and P1 be column-stochastic matrices, whose (i, j )th
elements are p

(0)
i j and p

(1)
i j , respectively. We model the unreliabil-

ity of the channel through a packet-drop probability ei for each
element i of the channel state–space. Thus, if on timestep k the
channel state 𝛾k = i and if the sensor transmits a packet then
the channel drops it with probability ei ∈ [0, 1] and it commu-
nicates the packet successfully to the controller with probability
(1 − ei ), that is,

rk :=

⎧⎪⎨⎪⎩
1, w.p. (1 − e𝛾k

) if tk = 1

0, w.p. e𝛾k
if tk = 1

0, if tk = 0,

where ‘w.p.’ stands for ‘with probability’. Thus, the packet drops
on each timestep is Bernoulli, though not i.i.d. We collect the
probabilities of packet drops across all possible channel states
in the vector e := [e1, e2, … , en]T ∈ [0, 1]n. Correspondingly,
we define the transmission success probability vector d as d :=
1 − e.

2.3 Sensor’s information pattern

Next, we describe the information available to the sensor to
make the transmission decisions tk. Apart from the plant state
xk that the sensor can measure perfectly on each timestep k, we
assume that if a successful reception occurs on timestep k, then
the controller acknowledges it by relaying the reception indica-
tor variable rk and the channel state 𝛾k over an error-free feed-
back channel. However, the sensor may use this channel feed-
back information only on subsequent timesteps.

To describe all the information available to the sensor on
timestep k more formally, we first introduce the variables Rk

and R+
k

to track the latest reception time before and latest reception time

until timestep k, respectively. Thus,

Rk := max
i
{i < k : ri = 1}, R+

k
:= max

i
{i ≤ k : ri = 1}.

The variable Rk is useful for the sensor’s decision making while
R+

k
is helpful in the analysis. Further, we let S j for j ∈ ℕ0 be the

j th successful random reception time, that is,

S0 = 0, S j+1 := min
{

k > S j : rk = 1
}

, ∀ j ∈ ℕ,

where without loss of generality, we have assumed that the
zeroth successful reception occurs on timestep 0.
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952 BOSE AND TALLAPRAGADA

From the controller feedback, the sensor knows Rk and 𝛾Rk

before deciding tk, from which the sensor can utilise the chan-
nel evolution model to obtain the probability distribution of the
channel state pk ∈ ℙ

n given Rk, 𝛾Rk
and all the transmission

decisions from Rk to k − 1, that is,

pk(i ) := Pr
[
𝛾k = i | Rk, 𝛾Rk

, {tw}
k−1
Rk

]
,

where pk(i ) is the ith element of the vector pk. Letting

p+
k

:=

{
pk, if rk = 0

𝛿𝛿𝛿𝛾k
, if rk = 1,

we can obtain pk recursively as

pk+1 =

{
P0p+

k
, if tk = 0

P1p+
k

, if tk = 1.
(5)

In the following remark, we discuss about the case when chan-
nel state feedback may not be error-free.

Remark 2.1Value of p+
k

under erroneous channel state feedback.

The probability distribution pk represents the belief of the sen-
sor about the true value of channel state 𝛾k, which evolves
based on the action-dependent Markov transition matrix and
the intermittently available feedback through p+

k
. Under perfect

channel state feedback, on a reception timestep (rk = 1), the
sensor knows the value of 𝛾k and therefore updates the interme-
diate belief p+

k
to 𝛿𝛿𝛿𝛾k

, else (rk = 0) it uses the current belief pk

for the same. In case of imperfect channel feedback, the chan-
nel state information acquired from the controller can be rep-
resented via a probability distribution p̂k, and the value of p+

k
can be set to p̂k when rk = 1. The analysis can then be suitably
modified.

We denote by Ik the information available to the sensor about
the controller’s knowledge of plant state before transmission
while we use I+

k
to denote the information available to the sen-

sor after channel state feedback (if any). Thus, I+
k
= Ik when

rk = 0, and I+
k

contains rk and 𝛾k over Ik when rk = 1. In other
words,

Ik := {k, xk, zk, Rk, xRk
, pk, tk−1, rk−1𝛾k−1}, (6a)

I+
k

:= {k, xk, z+
k

, R+
k

, xR+
k

, p+
k

, tk, rk𝛾k}. (6b)

Note that the channel state feedback by the controller is repre-
sented as rk−1𝛾k−1 and rk𝛾k in Ik and I+

k
, respectively. If rk = 1

then rk𝛾k = 𝛾k, and if rk = 0 then rk𝛾k = 0 and thus no chan-
nel state feedback is available. Note that {Ik}k∈ℕ0

and {I+
k
}k∈ℕ0

are action-dependent Markov processes. In particular, the prob-
ability distribution of Ik conditioned on {Is , ts}

k−1
s=0 can be shown

to be the same as the one conditioned on {Ik−1, tk−1}. Similarly,

{I+
k
} is ‘sufficient information’ to determine the distribution of

I+
k+1 given all the past information

2.4 Control objective

Given the plant and the controller models in Section 2.1, the
only decision making left to be designed is the sensor’s transmis-
sion policy  , which determines tk for each timestep k. In par-
ticular, we seek to design a feedback transmission policy using
the available information Ik on timestep k. The offline control objec-

tive that we seek to guarantee is the second-moment stabilisation of the

plant state to an ultimate bound exponentially. Formally, we want to
ensure

𝔼

[
x2

k
| I+0

]
≤ max{c2kx2

0 , B}, ∀k ∈ ℕ0, (7)

which is to have the second moment of the plant state decay
exponentially at least at a rate of c2 until it settles to the ulti-
mate bound B. We assume that the convergence rate parameter
c2 ∈ (ā2, 1). Note that (7) prescribes the restriction on the plant
state evolution in an offline fashion, in terms of only the initial
information. However, a recursive formulation of the control
objective is more conducive to designing a feedback transmis-
sion policy.

To design a feedback transmission policy, we need to define
an online version of the control objectives which is conditioned
upon the information sets I+

Rk
that become available to the sen-

sor through feedback received from the channel. First, we define
the performance function hk for every timestep k as follows:

hk := x2
k
−max{c2(k−Rk )x2

Rk
, B}.

Then, the online objective is to ensure

𝔼

[
hk | I+

Rk

]
≤ 0, ∀k ∈ ℕ0. (8)

We borrow Lemma III.1 from [21], which demonstrates that
any transmission policy that satisfies the online objective also
satisfies the offline objective.

Lemma 2.1(Sufficiency of the online objective [21]).. If a trans-

mission policy  satisfies the online objective (8), then it also satisfies the

offline objective (7). □

Note that in the control objective (7), the sources of random-
ness that determine the expectation are the transmission policy
 , the random channel behaviour and the process noise. The
transmission policy and the random channel behaviour deter-
mine the successful reception times while the process noise
affects the evolution of the performance function during the
inter-reception times. As the online objective (8) is essentially a
condition on the evolution of the performance function during
the inter-reception times, Lemma 2.1 continues to hold in the
setting of this paper.
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3 TWO-STEP DESIGN OF
TRANSMISSION POLICY

Designing a transmission policy so that the described system
meets the control objective (7) or even the stricter online objec-
tive (8) poses many challenges. The main challenge stems from
the random packet drops, which makes the necessity of a trans-
mission on timestep k dependent on future transmission deci-
sions. Further, the future evolution of the channel state depends
on all the past and current transmission decisions. Thus, the
transmission decisions tk cannot be made in a myopic man-
ner and instead must be made by evaluating their impact on the
channel and the control objective over a sufficiently long time
frame. To tackle this problem, we adopt a two-step design pro-
cedure. This general design principle is similar to that in [21],
wherein the reader can find a more detailed discussion about
this procedure as well as its merits. We now describe the two
steps of the design procedure.

In the first step, for each timestep k, we consider a fam-
ily of nominal policies with look-ahead parameter D ∈ ℕ. A nomi-
nal policy with parameter D involves a ‘hold-off’ period of D

timesteps from k to k +D − 1 during which tk = 0, and then
there is perpetual transmission, that is tk = 1 for all timesteps
after k +D − 1. Thus, letting  D

k
be the nominal policy with

parameter D, we have

 D
k

: ti =

{
0, if i ∈ {k, k + 1,… , k +D − 1}

1, for i ≥ k +D.
(9)

In the second step of the design procedure, we construct
the event-triggered policy,  D

et , using the nominal policies as
building blocks. Given (9), one can reason that if the nom-
inal policy with parameter D ∈ ℕ satisfies the online objec-
tive from the current timestep k, then a transmission on the
current timestep is not necessary to meet the online objec-
tive. Further, if the online objective cannot be met from
timestep k using the nominal policy  D

k
then it may be nec-

essary to transmit on timestep k. This forms the basis for
the construction of the event-triggered policy, which we detail
next.

First, we need a method to check if the nominal policy  D
k

satisfies the online objective from timestep k. For this, we define
the look-ahead function, D

k
, as the expected value of the perfor-

mance function hk at the next successful reception timestep
k = S j+1 under the nominal policy, that is,

D
k

:= 𝔼 D
k

[
hS j+1

| Ik, S j = Rk

]
. (10)

We can evaluate D
k

as a total expectation, over all possible val-
ues of S j+1, as

D
k
=

∑∞

w=D
𝔼 D

k

[
hS j+1

| Ik,…

⋯ S j = Rk, S j+1 = k + w
]
ΩD (w, pk ), (11)

where ΩD (w, p) is the probability of the event that the first suc-
cessful reception after timestep k is at timestep k + w under the
nominal policy  D

k
and given pk, the probability distribution of

the channel state at time k, conditioned on the information at
time Rk. Formally,

ΩD (w, p) : = Pr[S j+1 = k + w |  =  D
k

,…

⋯ pk = p, S j = Rk]. (12)

The closed form of ΩD (w, p) is given as follows:

ΩD (w, p) = dT (P1E)(w−D)P
(D)
0 p, (13)

where E is the diagonal matrix with elements of e on its main
diagonal. The explanation of (13) is as follows – the probabil-

ity vector p, when left-multiplied by P
(D)
0 provides the prob-

ability vector of the channel state immediately after the hold-
off period, which is of D timesteps. The said vector when left-
multiplied by (P1E)(w−D) provides the probabilities of, subse-
quent to the hold-off period, making a transmission attempt
(w −D) times successively but failing to achieve reception on
every attempt. Finally, left-multiplication by dT gives the proba-
bility of finally having a successful reception on the (k + w)th

timestep. Thus, (13) is the closed form of ΩD (w, p) defined
in (12).

3.1 The event-triggered policy

The main idea behind the proposed event-triggered policy is
the following. A negative sign of the look-ahead function D

k
indicates that it is not ‘necessary’ to transmit on timestep k as
there exists a transmission sequence (given by the nominal pol-
icy) that meets the objective at least on the next random recep-
tion timestep. However, if the sign of D

k
is non-negative, it

means that the sensor cannot afford to hold off transmission for
D timesteps from the current timestep k, and still ensure that
the online objective is not violated on some future timestep.
In the proposed event-triggered transmission policy, the sensor
evaluates D

k
at every timestep k, and when it turns non-negative

the sensor keeps transmitting on every timestep until a success-
ful reception occurs, and then the sensor again waits for D

k
to

turn non-negative. The event-triggered transmission policy may
be described formally as follows:

 D
et : tk =

{
0, if k ∈ {Rk + 1,… , 𝜏k − 1}

1, if k ∈ {𝜏k,… , Zk},
(14)

where 𝜏k is the first timestep after Rk when D
k
≥ 0 and Zk is the

first timestep, after Rk, on which there is a successful reception,
that is,

𝜏k := min{m > Rk : D
m ≥ 0},

Zk := min{m > Rk : R+m = m}.
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954 BOSE AND TALLAPRAGADA

Note that the event-triggered policy is described recursively in
terms of Rk, the latest reception time before k, and the look-
ahead function D

k
. As a result, the policy in (14) is valid for all

time k ≥ 0. In the analysis of the policy (14) in the sequel, it is
useful to refer to the j th reception time, denoted by S j . Similarly,
we let

Tj := min{m > S j : D
m ≥ 0}.

So, if S j = Rk then Tj = 𝜏k and S j+1 = Zk.
One can think of the policy (14) as operating in one of the two

modes: ‘do not transmit’ or ‘transmit’. The policy switches from
the first mode to the second at a time k exactly when D

k
≥ 0

for the first time after the last successful reception. After a suc-
cessful reception, the policy shifts back to the ‘do not transmit’
mode. Thus, from this perspective, D

k
≥ 0 can be thought of as

the event-triggering rule.

4 IMPLEMENTATION AND
PERFORMANCE GUARANTEES

In this section, we describe the implementation details of the
proposed event-triggered policy, and analyse the system under
this policy through several intermediate results. At the end of
the section, we provide sufficient conditions on the ultimate
bound B and the look-ahead parameter D such that the system
meets the online objective (and the offline objective) under the
event-triggered policy.

4.1 Closed-form expression of the
look-ahead criterion

For implementation of the event-triggered policy (14), we need
an easy method to compute the look-ahead function D

k
. In par-

ticular, we provide here a closed-form expression of the look-
ahead function. We begin by expanding the expectation term
in (11) as follows [46]:

𝔼
[
hS j+1

| Ik, S j = Rk, S j+1 = k + w
]
= ā2wx2

k

+ 2āw (aw − āw )xkzk + (a2w − 2awāw + ā2w )z2
k

+ M̄ (a2w − 1) −max{c2wc2(k−Rk )x2
Rk

, B}. (15)

From (11) and (15), it is evident that convergence of D
k

requires
the convergence of infinite series of the form

gD (b, p) :=
∑∞

w=D
bwΩD (w, p)

= bD
∑∞

w=D
b(w−D)dT (P1E)(w−D)P

(D)
0 p, (16)

with p ∈ ℙn, and D ∈ ℕ and for values of b equal to ā2, c2, a2,
āa and 1, which satisfy

0 < ā2 < c2 < 1 < a2, |āa| < a2. (17)

Each of the terms gD (b, p) involves an infinite matrix geomet-
ric series. The criteria for convergence and the closed form of
gD (b, p) for these values of b would allow us to determine the
same for D

k
. For the same, we use the well-known result that

for a non-negative matrix K, the infinite matrix geometric series∑∞

i=0 Ki converges to (I − K)−1 if and only if 𝜌(K) < 1.
To obtain a closed-form expression of gD (b, p), first note that

gD (b, p) = bDdT
[∑∞

w=0(bP1E)w
]
P

(D)
0 p.

If 𝜌(bP1E) < 1 then we obtain

gD (b, p) = bDdT (I − bP1E)−1P
(D)
0 p. (18)

In the following result, we apply the convergence criterion of
a matrix geometric series to provide a necessary and sufficient
condition for D

k
to be well defined.

Lemma 4.1. D
k

converges for all probability vectors pk if and only if
a2𝜌(P1E) < 1.

Proof. From (11)–(12) and (15)–(16), we see that an expansion
of D

k
involves terms such as gD (b, p) with b equal to ā2, aā, a2

and c2. Using (17) and noting that 𝜌(b1P1E) > 𝜌(b2P1E) when|b1| > |b2|, we can state that 𝜌(a2P1E) > 𝜌(b̃P1E) for b̃ equal
to ā2, aā and c2. Thus, 𝜌(a2P1E) = a2𝜌(P1E) < 1 is a necessary
and sufficient condition for convergence of D

k
. □

We now proceed to give a closed-form expression of the
look-ahead function D

k
in the following lemma.

Lemma 4.2 (Closed form of the look-ahead function). Suppose

that a2𝜌(P1E) < 1. The following is a closed-form expression of the look-

ahead function D
k

:

D
k
= gD (ā2, pk )x2

k
+ 2

(
gD (aā, pk ) − gD (ā2, pk )

)
xkzk

+
(
gD (a2, pk ) + gD (ā2, pk ) − 2gD (aā, pk )

)
z2

k

+ M̄
(
gD (a2, pk ) − gD (1, pk )

)
−

(
B fD (1, pk )+

+ Nk

[
gD (c2, pk ) − fD (c2, pk )

])
,

where M̄ := M (a2 − 1)−1, Nk := c2(k−Rk )x2
Rk

, the closed form of the

function gD (b, p) is given in (18), while fD (b, p) is given by

fD (b, p) := b𝜇dT (P1E)(𝜇−D)(I − bP1E)−1P
(D)
0 p.
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BOSE AND TALLAPRAGADA 955

Finally, 𝜇 is defined as follows:

𝜇 := max

{
D,

⌈
log(x2

Rk
∕B)

log(1∕c2)

⌉
− (k − Rk )

}
. (19)

Proof. Most terms in the closed form of D
k

follow directly
from (11), the series expansion of D

k
, the closed form of

ΩD (w, p) in (13), the expansion of the expectation term (15),
the definition (16) and the closed-form (18) of gD (b, p). We only
need to simplify∑∞

w=D
max{c2wc2(k−Rk )x2

Rk
, B} ΩD (b, pk ).

We split this summation into two parts based on if c2wNk is
larger or smaller than B. Observe that 𝜇, defined in (19), is the
smallest integer w ≥ D such that B ≥ c2wNk. Then,

∞∑
w=D

max{c2wc2(k−Rk )x2
Rk

, B} ΩD (w, pk )

= gD (c2, pk ) Nk +
∑∞

w=𝜇
(B − c2wNk )ΩD (w, pk )

[r1]
= B fD (1, pk ) +Nk

[
gD (c2, pk ) − fD (c2, pk )

]
,

where we obtain [r1] by observing that

∑∞

w=𝜇
bwΩD (w, p) =

∑∞

w=𝜇
bwdT (P1E)(w−D)P

(D)
0 p

= b𝜇dT (P1E)(𝜇−D) ∑∞

w=0(bP1E)wP
(D)
0 p = fD (b, p),

assuming 𝜌(bP1E) < 1. With this we obtain the complete
closed-form expression of the look-ahead function D

k
. □

Note that the closed form of D
k

is a third-degree polynomial
of the plant state xk, error zk, and individual elements of pk,
and is amenable for online computation. Furthermore, note that
the look-ahead function D

k
possesses a mathematical structure

consisting of a linear operator with unit-dimensional rowspace
acting on the stochastic vector pk.

4.2 Necessary condition on the ultimate
bound B

We now seek a necessary condition on the ultimate bound B

for there to exist a transmission policy that satisfies the online
objective. To this end, we introduce the open-loop performance func-

tion, H (w, y), which we define as the expectation of the perfor-
mance function hS j+1

conditioned upon I+
S j

and the event that

S j+1 = S j + w and x2
S j
= y, that is,

H (w, y) := 𝔼
[
hS j+1

| I+
S j

, x2
S j
= y, S j+1 = S j + w

]
. (20)

Note that H (w, x2
S j

) is very similar to (15) except that H is con-

ditioned upon I+
S j

and defined for the special case of k = S j .

Thus, the closed form of H (w, x2
S j

) may be obtained from (15)

by replacing k with S j , xk with xS j
and zk with z+

S j
= 0 and Rk

with R+
S j
= S j . Hence we have

H (w, x2
S j

) = ā2wx2
S j
+ M̄ (a2w − 1) −max{c2wx2

S j
, B}. (21)

Note that H (w, x2
S j

) < 0 indicates that given the information I+
S j

,

the online objective is satisfied on timestep S j + w. Conversely,
a positive sign implies that the online objective is expected to be
violated on timestep S j + w. Using this observation, we demon-
strate in the following proposition that for B less than a critical
B0, there exists no transmission policy that can satisfy the online
objective.

Proposition 4.1Necessary condition on the ultimate bound for

meeting the online objective. If B < B0 :=
M̄ log(a2 )

log(c2∕ā2 )
then no trans-

mission policy satisfies the online objective.

Proof. The proof relies on demonstrating that H (w, y) > 0 for all
w ∈ ℕ and for all y ∈ (B, B0). This implies that if x2

S j
∈ (B, B0),

then the system would violate the online objective on the very

next timestep after S j. From (21), note that for a fixed y, the
function H (w, y) can be written as

H (w, y) =

{
l1(w, y), if w ≤ w∗∗(y)

l2(w, y), if w > w∗∗(y),

with l1(w, y) := ā2wy + M̄ (a2w − 1) − c2wy and l2(w, y) :=

ā2wy + M̄ (a2w − 1) − B, where w∗∗(y) :=
log(y∕B)

log(1∕c2 )
is such

that l1(w∗∗(y), y) = l2(w∗∗(y), y). Now, it suffices to prove the
following two claims.

Claim (a): l1(w, y) > 0 for all w ∈ ℕ for y ∈ (B, B0).
Claim (b): l2(w, y) > 0 for all w ∈ ℕ for y ∈ (B, B0).
First, note that l1(0, y) = 0 for all values of y. Next, evalu-

ating the partial of l1(w, y) with respect to w at w = 0 and for
y ∈ (B, B0), we obtain

𝜕l1(0, y)

𝜕w
= log(ā2∕c2)y + M̄ log(a2)

[r1]
> log(ā2∕c2)B0 + M̄ log(a2)

[r2]
= 0.

Note that we have used the fact that ā2 < c2 to obtain [r1], and
used the definition of B0 in [r2]. Since l1(w, y) is a quasi-convex
function of w [21, Lemma IV.8], it is increasing for all w > 0,
which proves claim (a).

Now, we prove claim (b). We first derive a function g(w) that
is a lower bound on l2(w, y) for w ≥ 0 and y ∈ (B, B0).

l2(w, y) = ā2wy − M̄ (a2w − 1) − B
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956 BOSE AND TALLAPRAGADA

>ā2wy − y + M̄ (a2w − 1)

[r3]
>

B0

c2w
(ā2w − 1) + M̄ (a2w − 1) =: g(w),

where in [r3], we have used the fact that ā2 < 1, c2 < 1 and w ≥

0. Note that g(w) is strictly convex in w because

𝜕2g(w)

𝜕w2
= B0

ā2w

c2w
log2(ā2∕c2) + M̄a2w log2(a2) > 0.

The partial derivative of g(w) evaluated at w = 0 is

𝜕g(0)

𝜕w
= B0 log(ā2∕c2) + M̄ log(a2)

[r4]
= 0,

where in [r4] we have used the definition of B0. Since g(0) = 0,
g(w) has slope 0 at w = 0 and g is strictly convex in w, we
conclude that l2(w, y) > g(w) > 0 for all w ∈ ℕ, which proves
claim (b) and thus concluding the proof. □

Proposition 4.1 demonstrates that B > B0 is a necessary con-
dition on B for a transmission policy to satisfy the online objec-
tive. Note that this is a necessary condition on B even under the
setting of [21, 24], where no such condition is provided. In the
following subsection, we further analyse the open-loop perfor-
mance function H (w, y) to find a sufficient criterion on B and D

that guarantees that the online objective is met under the event-
triggered policy.

4.3 The performance-evaluation function,
 D

S j

For the purpose of analysing system performance between
any two successive reception times S j and S j+1, we define the
performance-evaluation function,  D

S j
. Its definition is similar to that

of D
k

in (10), though we define  D
S j

only for k = S j (success-

ful reception times) and condition upon the information set I+
S j

instead of IS j
. In particular, we let

 D
S j

:= 𝔼 D−1
S j+1

[
hS j+1

| I+
S j

]
=

∑∞

w=D
H (w, x2

S j
)Ω̃D (w, 𝛾S j

).

(22)

Here, Ω̃D (w, 𝛾) is the probability of getting a successful recep-
tion w timesteps after S j starting with channel state 𝛾 on S j

under the nominal policy  D−1
S j+1 . The purpose of the function

Ω̃D (w, 𝛾) is analogous to that ofΩD (w, p) in D
k

, and is formally
defined as

Ω̃D (w, 𝛾) := Pr[S j+1 = S j + w |  =  D−1
S j+1 , 𝛾S j

= 𝛾]. (23)

The closed form of Ω̃D (w, 𝛾) can be obtained in a manner simi-
lar to the closed form of ΩD (w, p), and is given as

Ω̃D (w, 𝛾) = dT (P1E)(w−D)P
(D−1)
0 P1𝛿𝛿𝛿𝛾. (24)

Note that in (24), the probability function Ω̃D (w, 𝛾) takes the
channel state 𝛾 as an argument instead of a probability distri-
bution p, since our assumed channel state feedback mechanism
stipulates perfect feedback, that is, pS j

= 𝛿𝛿𝛿𝛾S j
, and thus pS j

is
a deterministic function of 𝛾S j

. Before proceeding, we discuss

conceptual and structural differences between D
k

and  D
k

in
the following remark.

Remark 4.1 (Differences between D
k

and  D
S j

). The core differ-

ence between the look-ahead criterion D
k

and the performance-
evaluation function  D

S j
is that while D

k
is computed onboard

the sensor on every timestep k for the purpose of determin-
ing tk according to the event-triggered policy,  D

S j
is used as

an analytical tool for evaluation of inter-reception performance
between timesteps S j and S j+1. Note that the expectation in D

k

is conditioned upon the nominal policy  D
k

, while the expecta-
tion in  D

S j
is conditioned upon the nominal policy  D−1

S j+1 (as

opposed to  D
S j

in the i.i.d. case [21] and in the Markov chan-

nel case in [24]). The reason for doing this is that in case of
non-action-dependent channels (P0 = P1), once 𝛾S j

is known,

the resulting closed form of the probability function Ω̃D (w, 𝛾)
is the same irrespective of whether we condition the probabil-
ity in (23) upon nominal policy  D−1

S j+1 or  D
S j

. However, this is

not true for the action-dependent Markov channels, since the
stipulation that tS j

= 1 leads to calculation of belief on timestep
S j + 1 as pS j+1 = P1𝛿𝛿𝛿𝛾S j

instead of pS j+1 = P0𝛿𝛿𝛿𝛾S j
. This is vis-

ible in the closed form of Ω̃D (w, 𝛾) in (24), and obviously this
would not be an issue if P0 = P1, as aforementioned.

For a well-chosen value of B, it can be shown that the open-
loop performance function possesses the property of sign mono-

tonicity. This property is an important characteristic of H (w, y)
and will prove useful in later results.

Proposition 4.2 (Sign behaviour of the open-loop performance
function [21, Proposition IV.6].). There exists a B∗ ≥ B0 with B0
defined in Proposition 4.1 such that if B > B∗, then H (w, y) > 0 implies

H (s, y) > 0 for all s ≥ w. □

The value of B∗ defined in Proposition 4.2 can be numerically
computed using the procedure in the Appendix, which is based
on the proof of Lemma IV.13 in [21]. We now provide a closed-
form expression of the performance-evaluation function  D

S j
,

similar to the closed form of D
k

in Lemma 4.2.

Lemma 4.3 (Closed form of performance-evaluation function).
Suppose that a2𝜌(P1E) < 1. A closed form of the performance-evaluation
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BOSE AND TALLAPRAGADA 957

function  D
S j

is given as

 D
S j

:= g̃D (ā2, 𝛾S j
)x2

S j
+ M̄

[
g̃D (a2, 𝛾S j

) − g̃D (1, 𝛾S j
)
]

−
[
B f̃D (1, 𝛾S j

) + x2
S j

(
g̃D (c2, 𝛾S j

) − f̃D (c2, 𝛾S j
)
)]

,

where

f̃D (b, 𝛾) := b𝜈dT (P1E)(𝜈−D)(I − bP1E)−1P
(D−1)
0 P1𝛿𝛿𝛿𝛾 ,

g̃D (b, 𝛾) := bDdT (I − bP1E)−1P
(D−1)
0 P1𝛿𝛿𝛿𝛾 ,

and finally, 𝜈 is defined as

𝜈 := max

⎧⎪⎨⎪⎩D,

⎡⎢⎢⎢
log(x2

S j
∕B)

log(1∕c2)

⎤⎥⎥⎥
⎫⎪⎬⎪⎭.

Proof. Recall the infinite series expansion of  D
S j

in (22). To eval-

uate it, we substitute H (w, x2
S j

) with its closed form from (21)

and that of Ω̃D (w, 𝛾S j
) from (24). Correspondingly, we get an

expression that is the sum of multiple infinite series, as in the
derivation of D

k
in Lemma 4.2. To evaluate said terms, we

define the summation functions f̃𝜃 (b, 𝛾) and g̃𝜃 (b, 𝛾) given in the
statement of the lemma and which are analogous to f𝜃 (b, p) and
g𝜃 (b, p), respectively, and used for obtaining the expression for
D

k
. Proceeding exactly like in Lemma 4.2, we obtain the expres-

sion for  D
S j

. □

The next result is concerned with the expected value of D
k+1

after no transmission or after successful reception and the chan-
nel state feedback on timestep k. Note that this result is valid for
any transmission policy  .

Proposition 4.3 (Expected value of look-ahead function on
next timestep). Let  be any transmission policy. Then,

1. 𝔼 [D
k+1 | Ik, tk = 0] = D+1

k
;

2. 𝔼 [D
k+1 | Ik, rk = 1, 𝛾k] =  D+1

S j
, where S j = k.

Proof. 1: Note that

𝔼

[
D

k+1 | Ik, tk = 0
]

[r1]
= 𝔼

[
𝔼 D

k+1

[
hS j+1

| Ik+1, S j = Rk+1

] | Ik, tk = 0
]
,

[r2]
= 𝔼 D+1

k

[
𝔼 D

k+1

[
hS j+1

| Ik+1, S j = Rk

] | Ik, tk = 0
]
,

[r3]
= 𝔼 D+1

k

[
hS j+1

| Ik, tk = 0, S j = Rk

]
= D+1

k
,

where [r1] follows from (10), while in [r2] we can replace the
policy  with  D+1

k
because the event tk = 0 is consistent with

the policy  D+1
k

on time step k and once tk = 0 is fixed the
expected value of D

k+1 is independent of the transmission pol-
icy used on subsequent timesteps. In [r2], we also use the fact
that if tk = 0 then Rk+1 = Rk. Finally, [r3] uses the fact that
{Ik, tk} is sufficient informationand then the tower property.

2: For proving this part, we observe that Ik and the additional
information that rk = 1 and 𝛾k implies the knowledge of I+

k
.

Considering this fact and proceeding with a similar methodol-
ogy as the proof of claim 1, we observe that

𝔼

[
D

k+1 | Ik, rk = 1, 𝛾k

]
= 𝔼

[
𝔼 D

k+1

[
hS j+1

| Ik+1, S j = Rk+1

] | I+
k

, rk = 1
]
,

= 𝔼 D
k+1

[
𝔼 D

k+1

[
hS j+1

| Ik+1, S j = Rk+1

] | I+
k

, S j = k
]
,

= 𝔼


(D+1)−1
k+1

[
hS j+1

| I+
k

, S j = k
]
=  D+1

S j
.

□

Remark 4.2 ((Comparison with [21]).). Note that the state-
ment of part 1 of Proposition 4.3 differs from Proposition
IV.4(a) (first part) of [21] which considers the expected value
of D

k+1 in the setting of a channel with i.i.d. Bernoulli packet
drops, in that we condition D

k+1 upon the stricter condition
that tk = 0 as opposed to rk = 0 in [21]. This is because if the
probabilities of channel state transition are action dependent,
then on a timestep with a transmission but no reception (i.e.
tk = 1, rk = 0) the expected value of the look-ahead criterion
on the next timestep cannot be written in terms of either D+1

k

or  D+1
k

, as opposed to i.i.d. Bernoulli packet-drop channel
where 𝔼 [D

k+1|Ik, rk = 0] = D+1
k

holds. However, due to the
robustness of the event-triggered policy design, this does not
preclude utilisation of the event-triggered policy in the current
case, as will be demonstrated in the proof of Theorem 4.1.

We use Proposition 4.2, Lemma 4.3 and Proposition 4.3 to
give a sufficient condition on ultimate bound B, and the look-
ahead parameter D under which the online objective is met.
First, we give a sufficient condition to ensure  𝜃

S j
is negative.

Proposition 4.4 (Sufficient condition for performance-

evaluation function to be negative). Suppose B ≥ B0 =
M̄ log(a2 )

log(c2∕ā2 )
.

Consider the vector valued function Q(𝜃) : ℕ0 → ℝn given by

Q(𝜃) :=
[
𝜃 (ā2) −𝜃 (c2)

] B

c2𝜃
+ M̄

[
𝜃 (a2) −𝜃 (1)

]
,

wherein 𝜃 (b) := b𝜃dT (I − bP1E)−1. If Q(D) < 0 (elementwise),

for some D ∈ ℕ, then  𝜃
S j
< 0, ∀xS j

∈ ℝ and ∀𝜃 ∈ [1, D]ℤ.
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958 BOSE AND TALLAPRAGADA

We provide the proof of Proposition 4.4 in the Appendix.
Next, we consolidate the results so far to provide a theoreti-
cal guarantee that the event-triggered policy satisfies the online
objective (8).

Theorem 4.1 (Performance guarantee of the event-triggered
policy). If B > B∗ (see Appendix) and the look-ahead parameter D

satisfies the condition Q(D) < 0, then the event-triggered policy (14) guar-

antees that the online objective (8), and therefore the original offline objec-

tive (7), are met.

Proof. Given Lemma 2.1, it suffices to show that the online
objective (8) is met by the event-triggered policy. We centre the
proof around the following two claims.

Claim (a): For any j ∈ ℕ0, 𝔼 D
et

[hS j+1
| I+

S j
] ≤ 0 implies

𝔼 D
et

[hk | I+
S j

] ≤ 0 for all k ∈ [S j , S j+1]ℤ.

Claim (b): For any j ∈ ℕ0, 𝔼 D
et

[hS j+1
| I+

S j
] < 0.

These two claims guarantee that the online objective is met,
as

𝔼 D
et

[
hk | I+0

]
= 𝔼 D

et

[
…𝔼 D

et

[
𝔼 D

et

[
hk | I+

S j

] | I+
S j−1

]
… | I+0

]
,

where {Si} are the random reception times and S j = R+
k

.
To prove Claim (a), we note that by the definition of open-

loop performance function H (w, y) in (20), we have

𝔼 D
et

[
hk | I+

S j

]
= H (k − S j , x2

S j
), ∀k ∈ [S j , S j+1]ℤ.

If 𝔼 D
et

[hS j+1
| I+

S j
] = H (S j+1 − S j , x2

S j
) < 0, then the sign

monotonicity property of the open-loop performance func-
tion (Proposition 4.2) implies H (k − S j , x2

S j
) ≤ 0 for all k ∈

[S j , S j+1]ℤ, which proves Claim (a).
We now prove Claim (b). It can be seen from Proposition 4.3

that for all k ∈ (S j , Tj )ℤ,

𝔼 D
et

[
D

k+1 | k ∈ (S j , Tj )ℤ, I+
S j

]
[r1]
= 𝔼 D

et

[
𝔼 D

et

[
D

k+1 | Ik, tk = 0
] | I+

S j

]
[r2]
= 𝔼 D

et

[
D+1

k
| I+

S j

]
, (25)

where [r1] is obtained using the tower property and the fact that
tk = 0 for k ∈ (S j , Tj )ℤ, while [r2] is obtained from Proposi-
tion 4.3. Furthermore, Proposition 4.3 (b) implies that

𝔼 D
et

[
D

S j+1 | I+
S j

]
= 𝔼 D

et

[
D

S j+1 | IS j
, rS j

= 1, 𝛾S j

]
=  D+1

S j
. (26)

Next, we condition the expected value of hS j+1
over informa-

tion from timestep Tj as well as timestep S j and using the tower
property of conditional expectations, we obtain

𝔼 D
et

[
hS j+1

| I+
S j

] [r3]
= 𝔼 D

et

[
𝔼 0

Tj

[
hS j+1

| ITj
, S j = RTj

] | I+
S j

]
= 𝔼 D

et

[
0

Tj
| I+

S j

]
, (27)

where the inner expectation in [r3] is conditioned under the
nominal policy  0

Tj
since for all timesteps k ∈ [Tj , S j+1]ℤ, we

have transmissions (tk = 1). We consider two cases: Tj ≤ S j +

D and Tj > S j +D. In the first case, since tk = 0 for k ∈

(S j , Tj )ℤ, we use (25) and (26) to write (27) as

𝔼 D
et

[
0

Tj
| I+

S j

]
= 𝔼 D

et

[


Tj−S j−1
S j+1 | I+

S j

]
= 

Tj−S j

S j
,

where Proposition 4.4 ensures that if Tj − S j ≤ D then


Tj−S j

S j
< 0. We now consider the second case in which Tj >

S j +D. Since we have tk = 0 for k ∈ (S j , Tj )ℤ, we use (25) to
write (27) as

𝔼 D
et

[
0

Tj
| I+

S j

]
= 𝔼 D

et

[
D

Tj−D
| I+

S j

]
< 0,

since D
k

is negative, by definition, for k ∈ (S j , Tj )ℤ. This
proves Claim (b), and hence also the result. □

We conclude this section by commenting on the extension of
the event-triggered policy to vector systems.

Remark 4.3 (Extension to vector systems). The event-triggered
policy for control objective (7) can easily be extended to a
general vector system of the form xk+1 = Axk + Buk + vk,
with xk ∈ ℝ

n, 𝔼[vk] = 0, and 𝔼[vkvT
k

] = M = MT > 0, with
the control objective being to find a policy  such that
𝔼 [xT

k
xk | I+0 ] ≤ max{c2kxT

0 x0, B}. The control scheme could
be uk = Lx̂k (similar to uk = Lx̂k in the scalar case), with
(A + BL) being Schur stable. There are two primary approaches
towards the vector case extension. The first approach is appli-
cable when it is possible to decompose the vector system
into n scalar subsystems, and correspondingly obtain n look-
ahead criteria (

(D,1)
k

,… ,
(D,n)
k

) on every timestep. We can then
use the largest value of the n look-ahead criteria so obtained
in the triggering condition (14), thereby creating an event-
triggered policy that can stabilise the worst-case mode of the
system, and can thus stabilise the entire system. The second
approach involves a scalarisation of the vector system using
any appropriate lp norm of the state variables and matrices
involved in various calculations. This approach has been con-
sidered for vector systems in the Bernoulli packet-drop chan-
nel system in [21], and can easily be extended for the present
case.
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BOSE AND TALLAPRAGADA 959

5 TRANSMISSION FRACTION

This section analyses the efficiency of the proposed event-
triggered transmission policy in terms of the fraction of times
the sensor transmits (tk = 1) over a given time horizon. First,
we introduce the transmission fraction up to timestep K as

K :=
𝔼 D

et

[∑K

i=1 ti
||| I+0

]
𝔼 D

et

[
K

||| I+0

] ,

wherein the stopping timestep K could itself be a random vari-
able. We call the limit of K when K →∞ as the asymptotic trans-

mission fraction, denoted by ∞.
We also consider another type of transmission fraction which

we call the transmission fraction up to state  , and denote it with  .
It is defined as the transmission fraction up to the first reception
timestep such that the squared plant state is lesser than  . That
is,

 :=
𝔼 D

et

[∑S j

i=1 ti
||| I+0 , {x2

Sl
}

j−1
l=0 ≥  , x2

S j
< 

]
𝔼 D

et

[
S j

||| I+0 , {x2
Sl
}

j−1
l=0 ≥  , x2

S j
< 

] .

In the following remark, we discuss the conceptual difference
between ∞ and  , and the advantages of having a closed-
form upper bound for both.

Remark 5.1 (Comparison between ∞ and  ). The asymp-
totic transmission fraction∞ denotes the fraction of timesteps
the sensor transmits under the event-triggered policy over an
infinite horizon. An upper bound on ∞ is therefore useful
in determining the worst-case channel utilisation over a long
period of time. Note that the system behaviour captured by
∞ is dominated by the timesteps when the second-moment
plant state x2

k
is under the ultimate bound B since ∞ is

defined over the infinite horizon k ∈ [1,∞)ℤ. However, prior
to the timestep k = log(Bx−2

0 ) log(c2)−1 the control envelope
max{c2kx2

0 , B} decays exponentially, and the transmission frac-
tion to state  ,  , is useful in capturing the transmission frac-
tion during this transient period. □

In Theorem 5.1, we give an upper bound on  that only
involves plant and channel parameters, and  . Then, we derive
an upper bound on the asymptotic transmission fraction ∞ as
a corollary.

Theorem 5.1 (Upper bound on  ). Suppose Q(D) < 0 for a

given value of D. The transmission fraction up to state  is upper bounded

by

 ≤
 (1)

 (0) +  (1)
,

where

 (0) := max
∈ℕ0

{ | Q (D + ) < 0}

Q (𝜃) :=
[
𝜃 (ā2) −𝜃 (c2)

]
max{ , Bc−2𝜃}

+ M̄
[
𝜃 (a2) −𝜃 (1)

]
,

with 𝜃 (b) as defined in Proposition 4.4, while  (1) is given by

 (1) = max
i∈[1,n]ℤ

{dT (P1E)(I − P1E)−2𝛿𝛿𝛿i}.

Proof. We find an upper bound on  by first considering
the time horizon between two successive reception times, and
then extending the analysis to an arbitrary number of inter-
reception cycles. For j ∈ ℕ0, we let Δ j be the time horizon
(S j , S j+1]ℤ. Further, throughout this proof, we use the short-

hand 𝚷𝜃 (𝛾S j
) := P

(𝜃−1)
0 P1𝛿𝛾S j

for notational convenience.
Using the structure of the event-triggered policy, we split

Δ j into two parts as Δ
(0)
j := (S j , Tj )ℤ and Δ

(1)
j := [Tj , S j+1]ℤ.

Hence, for k ∈ Δ
(0)
j , no transmission occurs (tk = 0) while for

each k ∈ Δ
(1)
j , a transmission occurs (tk = 1). Now, consider the

following two claims.
Claim (a): 𝔼 D

et
[|Δ(0)

j | | I+
S j

, x2
S j
>  ] ≥  (0).

Claim (b): 𝔼 D
et

[|Δ(1)
j | | I+

S j
] ≤  (1), for all xS j

∈ ℝ.

Supposing the two claims are true, consider the transmis-
sion fraction during the j th horizon, Δ j , conditioned on I+

S j
.

We note that it satisfies the inequality in (28) since the trans-
mission fraction is increasing in the term 𝔼 D

et
[|Δ(1)

j | | I+
S j

], and

decreasing in the term 𝔼 D
et

[|Δ(0)
j | | I+

S j
, x2

S j
>  ]. Now, as this

upper bound is independent of the state of the system as
long as x2

S j
>  , we obtain the upper bound on  , stated in

the result. Thus, all that remains now is to prove Claims (a)
and (b).

To prove Claim (a), we start by demonstrating that, for a given
value of 𝜃 ∈ ℕ and under the assumption that x2

S j
≥  ,  𝜃

S j
≤

Q (𝜃)Π𝜃 (𝛾S j
). To this end, we consider two cases,  ∈ Λ1 =

[0, Bc−2𝜃 ) and  ∈ Λ2 = [Bc−2𝜃 ,∞), respectively. If  ∈ Λ1,
then we have

 𝜃
S j
≤  j (𝜃) = Q(𝜃)Π𝜃 (𝛾S j

) = Q (𝜃)Π𝜃 (𝛾S j
),

where the inequality is from Claim (a) of Proposition 4.4, the
first equality from (A1) and the second equality from the fact
that  ∈ Λ1. Now, consider the case of x2

S j
≥  ∈ Λ2. Recall

from the proof of Claim (a) of Proposition 4.4 that  𝜃
S j

can be
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960 BOSE AND TALLAPRAGADA

upper bounded as given in (29):

𝔼 D
et

[|Δ(1)
j | ||| I+

S j

]
𝔼 D

et

[|Δ(0)
j | ||| I+

S j
, x2

S j
> 

]
+ 𝔼 D

et

[|Δ(1)
j | ||| I+

S j

] ≤
 (1)

 (0) +  (1)

(28)

 𝜃
S j
≤

[
g̃𝜃 (ā2, 𝛾S j

) − g̃𝜃 (c2, 𝛾S j
)
]
x2

S j
+ M̄ [g̃𝜃 (a2, 𝛾S j

) − g̃𝜃 (1, 𝛾S j
)]

[r1]
=

[(
𝜃 (ā2) −𝜃 (c2)

)
max{ , Bc−2𝜃} + M̄

(
𝜃 (a2) −𝜃 (1)

)]
Π𝜃 (𝛾S j

)
[r2]
= Q (𝜃)Π𝜃 (𝛾S j

), (29)


(1)
i :=𝔼 D

et
[w | S j+1 = Tj + w, 𝛾Tj

= i] = dT
[∑∞

s=0 s(P1E)s
]
𝛿𝛿𝛿i

= dT (P1E)(I − P1E)−2𝛿𝛿𝛿i , (30)

where [r1] is a result of (A1) and the facts that 𝜃 (ā2) −
𝜃 (c2) < 0 and x2

S j
≥  ≥ Bc−2𝜃 , and [r2] uses the definition of

Q (𝜃). Thus, we have demonstrated that for any given  ≥ 0,
if x2

S j
≥  then  𝜃

S j
≤ Q (𝜃)Π𝜃 (𝛾S j

).

Now, suppose x2
S j
≥  and Q (D + ) < 0 for some  ∈

ℕ0, where D is the operational value of the look-ahead parame-
ter. Then, through a recursive application of Proposition 4.3 

times, we get

𝔼 D
et

[
D

S j+
|I+

S j

]
= 𝔼 D

et

[
 D+

S j
|I+

S j

]
≤ Q (D + ) < 0.

(31)

Hence, from the design of the event-triggered policy (14), it fol-
lows that Tj > S j + , or in other words, no transmission takes
place at least  timesteps from S j , in expectation. Thus,

𝔼 D
et

[|Δ(0)
j

||||I+0 , x2
S j
≥ 

]
≥  (0).

Now, consider Claim (b). Note that tk = 1 for all k ∈ Δ
(1)
j ,

and from the event-triggered policy, 𝔼 D
et

[|Δ(1)
j |] is simply the

expected number of timesteps for reception under a string of
continuous transmission attempts, starting from timestep Tj

and channel state 𝛾Tj
. To capture the same, we define the con-

stant 
(1)
i

for i ∈ [1, n]ℤ in (30). We bound |Δ(1)
j

| by simply

choosing the highest value of 
(1)
i

among i ∈ [1, n]ℤ, thereby

showing that  (1) is indeed an upper bound on |Δ(1)
j |. This

proves Claim (b) and the result. □

Remark 5.2 (Trade-off between control performance and trans-
mission fraction). Suppose for a given value of  and some
𝜓 ∈ ℕ, we have Q (𝜓) < 0 but Q (𝜓 + 1)𝛿𝛿𝛿i ≥ 0 for at least
one i ∈ [1, n]ℤ. Then if the operational value of the look-ahead
parameter is D, we note that D +  = 𝜓. The system designer

can either choose a high value of D (conservative control) but
this results in a lower value of , and thus a larger upper bound
on  . Conversely, a lower value of D (aggressive control) leads
to a higher value of , and thus a smaller upper bound on  .

We show in the following result that an upper bound on the
asymptotic transmission fraction, ∞ can be obtained by set-
ting  = Bc−2D in the upper bound of  provided in Theo-
rem 5.1.

Corollary 5.1 (Upper bound on asymptotic transmission frac-
tion). The asymptotic transmission fraction ∞ is upper bounded by

∞ ≤
 (1)


(0)
∞ +  (1)

,

where 
(0)
∞ := max

∈ℕ0
{ | Q(D + ) < 0} and  (1) is as defined in

Theorem 5.1.

Proof. The proof is similar to that of Theorem 5.1 except for
one key difference. We note that in Theorem 5.1,  (0) was
obtained as the -maximiser of Q (D + ) under the con-
straint that Q (D + ) < 0. This ensured that the transmis-
sion fraction over the horizon (S j , S j+1]ℤ is upper bounded by
 (1)( (0) +  (1) )−1, under the assumption that x2

S j
≥  . In case

of asymptotic transmission fraction, we know that said upper
bound on transmission fraction over the horizon (S j , S j+1]ℤ has
to hold for all j ∈ ℕ0, and equivalently for all x2

S j
> 0. Thus we

derive the term 
(0)
∞ by first maximising Q (D + ) over all

possible values of  and then choosing the largest value of 
such that Q (D + ) < 0 and setting 

(0)
∞ equal to said value.

The former maximisation is carried out because Q (D +

)𝚷D+(𝛾S j
) acts as an upper bound on  D+

S j
, which we want

to be negative so that (31) is valid. Thus, we let


(0)
∞ := max

∈ℕ0
{ | max

∈ℝ, ≥0
{Q (D + )} < 0}

= max
∈ℕ0

{ | Q(D + ) < 0},

which follows from the fact that c2 > ā2 and the definitions of
Q (𝜃) and Q(𝜃). The rest of the proof follows along similar
lines as that of Theorem 5.1. □

6 ILLUSTRATIVE EXAMPLE

In this section, we validate our transmission policy design
through simulations. In this section, we illustrate the wider
applicability of our channel model and our proposed design
method with a model-based example. We consider control with
a battery-powered EH sensor, and the state of charge (SoC) of
the said battery constitutes the ‘channel’ state. The channel state
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BOSE AND TALLAPRAGADA 961

evolves according to a linear saturated system with noise, which fits
in the action-dependent Markov channel framework.

6.1 Energy-harvesting sensor

In this subsection, we model an EH sensor with a battery. The
amount of energy harvested by the sensor is assumed to be
stochastic, and a lack of enough energy collected by the sen-
sor could lead to failure of transmissions. We model the SoC
of the battery as a discrete valued quantity in the set [0, s̄]ℤ,
where s̄ > 0 represents the maximum SoC. We let k ∈ [0, s̄]ℤ
denote the battery SoC on timestep k, which also is the ‘chan-
nel’ state in our framework. On every timestep, the battery first
provides energy for transmission if required (tk = 1), and then
harvests energy according to an arrival process {Zk}

∞
k=1, which

we assume to be i.i.d. We let 𝜂 ∈ ℕ be the energy cost of mak-
ing a successful transmission, and if there is less than 𝜂 units
of energy in the battery, the transmission fails and no energy is
extracted from the battery. The above dynamics can be repre-
sented with a linear saturated system as

+
k
=

{
k, if k < tk𝜂

k − tk𝜂, if k ≥ tk𝜂,

)
(32a)

k+1 = min{+
k
+ Zk, s̄}, ∀k ∈ ℕ0, (32b)

where +
k

is the intermediate state after possibly a transmis-
sion, which utilises energy from the battery. We now derive the
Markov transition matrices P0 and P1. From (32), we can obtain
the (i, j )th element of P0 and P1, with tk = 0 and tk = 1, respec-
tively, as

Pr
[
k+1 = s(i ) |k = s( j ), tk

]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pr
[
Zk = s(i ) − s( j )

]
, if s( j ) < tk𝜂 and s(i ) < s̄

Pr
[
Zk = s(i ) − (s( j ) − tk𝜂)

]
, if s( j ) ≥ tk𝜂 and s(i ) < s̄

Pr
[
Zk ≥ s(i ) − s( j )

]
, if s( j ) < tk𝜂 and s(i ) = s̄

Pr
[
Zk ≥ s(i ) − (s( j ) − tk𝜂)

]
, if s( j ) ≥ tk𝜂 and s(i ) = s̄,

where s(i ) ∈ [0, s̄]ℤ is the ith discrete level that the battery SoC
could be in. For the purpose of simulations, let Zk belong to
a Poisson distribution with arrival rate 𝜆 > 0. Thus, Pr[Zk =

q] = exp(−𝜆)𝜆q (q!)−1 for q ≥ 0, and Pr[Zk = q] = 0 for any
q < 0. In order to determine the packet-drop probabilities, that
is, the vector e, we note that for any state s, if s < 𝜂 then the
probability of packet drop is 1, otherwise it is 0. We write this
formally as

e( j ) =

{
1, if s( j ) < 𝜂

0, if s( j ) ≥ 𝜂,

where e( j ) represents the jth element of the vector e.

FIGURE 2 Evolution of the empirical mean of the plant and ‘channel’
states Note: (a) The empirical evolution of the second-moment plant state for
the energy-harvesting (EH) sensor channel model. (b) The evolution of empir-
ical mean of state of charge (SoC) of the battery attached under the EH sen-
sor. In both figures, trajectories are provided for various values of look-ahead
parameter D, and for the times-triggered policy with 𝜅 = 2. (c) The stem plot of
transmissions and receptions under event-triggered transmissions for one reali-
sation.

6.2 Simulation results

For the EH sensor model, we choose the parameters s̄ = 15,
𝜂 = 8 and 𝜆 = 0.85, while for the plant parameters, we choose
the values a = 1.05, c = 0.98, ā = 0.95c, M = 0.25, B = 10 and
x0 = 15.5B. From the calculations presented in the Appendix,
we find that B∗ = 2.32, and therefore the condition B > B∗ is
satisfied. We carried out simulations using MATLAB. In order
to generate empirical results, we simulate the system evolution
5000 times, followed by taking an average of these results. For
the channel, we set the initial state 𝛾0 = 1 for all simulated tra-
jectories, that is, the battery starts off completely discharged.

The simulation results are presented in Figures 2 and 3. In
particular, Figure 2(a) shows the evolution of the empirical mean
of the plant state for different values of the look-ahead param-
eter D. We note that a higher value of D leads to more ‘aggres-
sive’ control as described in Remark 5.2. Figure 2(b) shows the
evolution of the empirical mean of the battery SoC. In order to
compare performance of the event-triggered policy with a peri-
odic time-triggered policy, we also include in Figure 2(a) and
(b) the evolution of plant and channel state under policy  𝜅

tt ,
which sets tk = 1 for every k which is an integer multiple of
𝜅 ∈ ℕ0, and tk = 0 otherwise. It is interesting to note in Fig-
ure 2(b) that the battery SoC (channel state) settles to a constant
value after initial transient behaviour, and this constant value
is smaller for larger values of D, that is, a higher value of D

expends more energy from the battery. The benefit in terms of
energy savings in the EH battery under the proposed policy over
periodic time-triggered policies is evident from Figure 2(b). In
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962 BOSE AND TALLAPRAGADA

FIGURE 3 Simulation results and theoretical upper bounds on the trans-
mission fractions k and  for various values of look-ahead parameter DNote:
Subparts (a) and (b) show the empirical mean values of k and  respectively,
while subpart (c) shows the theoretical upper bounds on k and  .

order to demonstrate the pattern of transmission times under
the event-triggered policy, we display a stem plot of transmis-
sion and reception for one realisation of system evolution under
event-triggered transmissions in Figure 2(c).

Figure 3(a) shows the empirical value of the transmission
fraction k for both models for 5000 timesteps, and it can
be seen that k reaches a steady-state value for large k, with
greater values of D leading to higher asymptotic values of k.
Figure 3(b) shows the empirical value of  generated during
the simulation, while Figure 3(c) shows the theoretical upper
bounds on both  (given in Theorem 5.1) and ∞ (given in
Corollary 5.1). From Figure 3(c), it can be seen that the theo-
retical upper bound on ∞ is similar to the theoretical upper
bound on  for  = Bc−2D , as noted in the proof of Theo-
rem 5.1. As expected, both empirical values of k and  , and
their respective upper bounds are greater for larger values of
D, which demonstrates the trade-off between performance and
transmission fraction, as discussed in Remark 5.2.

7 CONCLUSION

This paper considers an NCS consisting of a scalar linear plant
with process noise and non-collocated sensor and controller.
Further, the sensor communicates over a time-varying channel
whose state evolves according to an action-dependent Markov
process. The state of the channel determines the probability
with which a packet transmitted by the sensor is dropped. In
this setting, we have designed an event-triggered transmission
policy that guarantees the second-moment stabilisation of the
plant state at a desired rate of convergence to an ultimate bound.
We also derived upper bounds on the transient and the asymp-
totic transmission fraction, the fraction of timesteps on which
the sensor transmits. We have verified and illustrated our analy-

sis and theoretical guarantees through simulations in an example
scenario, in which we considered the problem of control with an
EH and battery-equipped sensor. Future work includes incor-
poration of imperfect measurement of plant and channel state,
application of the proposed action-dependent Markov channel
framework to control over a shared channel and over channels
that are queuing processes.
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APPENDIX

Proof of Proposition 4.4

Proof. We structure the proof in the form of two claims.
Claim (a): For the look-ahead parameter 𝜃 ∈ ℕ, the

performance-evaluation function  𝜃
S j

is uniformly (in xS j
) upper

bounded as  𝜃
S j
≤  j (𝜃), where

 j (𝜃) :=
[
g̃𝜃 (ā2, 𝛾S j

) − g̃𝜃 (c2, 𝛾S j
)
]

B

c2𝜃
+

M̄
[
g̃𝜃 (a2, 𝛾S j

) − g̃𝜃 (1, 𝛾S j
)
]
.

Claim (b): For 𝜃 ∈ ℕ, Q(𝜃) < 0 implies  j (𝜃) < 0, ∀ j ∈ ℕ0.
Further, Q(D) < 0 for D ∈ ℕ implies Q(𝜃) < 0, ∀𝜃 ∈ [1, D]ℤ.

Note that if Claims (a) and (b) are valid, then the result of
Proposition 4.4 follows. For proving Claim (a), we partition the
possible values of x2

S j
into two sets:

Λ1 := [0, Bc−2𝜃 ), Λ2 := [Bc−2𝜃 ,∞),

and demonstrate that  𝜃
S j
<  j (𝜃) in each case. The proof is

centred around the following two sub-claims, which establish
bounds on some important terms of the closed form of  𝜃

S j

from Lemma 4.2.
Claim (a1): If x2

S j
∈ Λ1, then B f̃𝜃 (1, 𝛾S j

) ≥
B

c2𝜃
g̃𝜃 (c2, 𝛾S j

).

Claim (a2): If x2
S j
∈ Λ2, then B f̃𝜃 (1, 𝛾S j

) ≥ x2
S j

f̃𝜃 (c2, 𝛾S j
).

To prove Claim (a1), we recall the term 𝜈 in the closed form
of f̃𝜃 (b, 𝛾) in Lemma 4.2 and note that 𝜈 = 𝜃 when x2

S j
< Bc−2𝜃 .

Thus, g̃𝜃 (b, 𝛾S j
) = f̃𝜃 (b, 𝛾S j

) when x2
S j
∈ Λ1. Now observe that

Bc−2𝜃 g̃𝜃 (c2, 𝛾S j
)

[r1]
=

B

c2𝜃
c2𝜃dT (I − c2P1E)−1P

(𝜃−1)
0 P1𝛿𝛿𝛿𝛾S j

[r2]
≤ BdT (I − P1E)−1P

(𝜃−1)
0 P1𝛿𝛿𝛿𝛾S j

= B f̃𝜃 (1, 𝛾S j
),
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where [r1] uses the definition of g̃𝜃 (b, 𝛾S j
), and [r2] follows from

the facts that c2 < 1 and (I − c2P1E)−1 =
∑∞

w=0(c2P1E)w <∑∞

w=0(P1E)w = (I − P1E)−1, where the inequality is element-
wise. This completes the proof of Claim (a1).

To prove Claim (a2), we establish an upper bound on c2𝜈

under the assumption that x2
S j
∈ Λ2. Note that

c2𝜈 = c

2 max

⎧⎪⎨⎪⎩𝜃,

⎡⎢⎢⎢
log(x2

S j
∕B)

log(1∕c2 )

⎤⎥⎥⎥
⎫⎪⎬⎪⎭ ≤ c

2
⎡⎢⎢⎢

log(B∕x2
S j

)

log(c2 )

⎤⎥⎥⎥ ≤ B

x2
S j

,

where we have again used the fact that c2 < 1. From this bound,
one can upper bound x2

S j
f̃𝜃 (c2, 𝛾S j

) as

x2
S j

f̃𝜃 (c2, 𝛾S j
) ≤ BdT (P1E)(𝜈−𝜃)(I − c2P1E)−1P

(𝜃−1)
0 P1𝛿𝛿𝛿𝛾S j

≤ BdT (P1E)(𝜈−𝜃)(I − P1E)−1P
(𝜃−1)
0 P1𝛿𝛿𝛿𝛾S j

= B f̃𝜃 (1, 𝛾S j
).

This concludes the proof of Claim (a2).
Now, we recall the closed form of  𝜃

S j
. If x2

S j
∈ Λ1,

we have f̃𝜃 (c2, 𝛾S j
) − g̃𝜃 (c2, 𝛾S j

) = 0 and x2
S j
< Bc−2𝜃 , while

g̃𝜃 (ā2, 𝛾S j
) ≥ 0. These facts along with Claim (a) imply that

 𝜃
S j
≤  j (𝜃) when x2

S j
∈ Λ1. In the case that x2

S j
∈ Λ2, we rear-

range the closed form of  𝜃
S j

as

 𝜃
S j
=[g̃𝜃 (ā2, 𝛾S j

) − g̃(c2, 𝛾S j
)]x2

S j
+ M̄ [g̃𝜃 (a2, 𝛾S j

)

−g̃𝜃 (1, 𝛾S j
)] − [B f̃𝜃 (1, 𝛾S j

) − x2
S j

f̃𝜃 (c2, 𝛾S j
)].

Then using Claim (b), the fact that g̃𝜃 (ā2, 𝛾S j
) < g̃𝜃 (c2, 𝛾S j

) (since

ā2 < c2), and lastly the fact that x2
S j
≥ Bc−2𝜃 , we conclude that

 𝜃
S j
≤  j (𝜃) when x2

S j
∈ Λ2. Thus,  j (𝜃) uniformly upper

bounds  𝜃
S j

for all x2
S j
∈ [0,∞).

We start the proof of Claim (b) by noting that  j (𝜃) can be
written as

 j (𝜃) = Q(𝜃)P
(𝜃−1)
0 P1𝛿𝛿𝛿𝛾S j

. (A1)

From the element-wise non-negativity of P
(𝜃−1)
0 P1𝛿𝛿𝛿𝛾S j

for all

𝜃 ∈ ℕ and 𝛾S j
∈ [1, n]ℤ, we conclude that a sufficient condition

to ensure  j (D) < 0 for a given D and all j ∈ ℕ0 is to ensure
that Q(D) < 0. We now show that every element of Q(𝜃) is
monotonically increasing in 𝜃, and thus, Q(D) < 0 ensures
Q(𝜃) < 0 for 𝜃 ∈ [1, D]ℤ. The first and the second derivatives
of Q(𝜃) with respect to 𝜃 are

dQ(𝜃)

d𝜃
=

B

c2𝜃
log

(
ā2

c2

)
𝜃 (ā2) + M̄ log(a2)𝜃 (a2)

d2Q(𝜃)

d𝜃2
=

B

c2𝜃
log2

(
ā2

c2

)
𝜃 (ā2) + M̄ log2(a2)𝜃 (a2).

Note that each element of the second derivative is strictly pos-
itive. Thus, each element of Q(𝜃) is strictly convex in 𝜃. Also,
note that the first derivative of Q(𝜃) at 𝜃 = 0 is

dQ(𝜃)

d𝜃

[r1]
> B log

(
c2

ā2

)[
0(a2) −0(ā2)

]
> 0,

where [r1] follows from the fact that B ≥ B0. Since each element
of Q(𝜃) is strictly convex for 𝜃 ∈ ℝ and increasing at 𝜃 = 0,
it follows that each element of Q(𝜃) is monotonically increas-
ing for 𝜃 ≥ 0. Thus, Q(D) < 0 implies Q(𝜃) < 0, and thereby
 𝜃

S j
< 0 for all 𝜃 ∈ [1, D]ℤ. □

Procedure to compute a sufficient lower bound B∗ on the

ultimate bound B

Here, we provide a procedure to compute the lower bound B∗

on B, referred to in Proposition 4.2. This procedure is based
on the proof of Lemma IV.13 in [21] and we present it here for
completeness. First, we define the following constants:

P1 := log(a2∕ā2), P2 := log(a2c2∕ā2), P3 := log(1∕c2),

P4 := log

(
log(1∕ā2)

M̄ log(a2)

)
.

Then, consider the following functions of B:

U (B) := e

P3P4
P2 B

P1
P2 , w∗∗(B) :=

log(B)
P2

+
P4

P2
,

Y (B) := ā2w∗∗ (B)U (B) + M̄a2w∗∗ (B),

F∗∗(B) := Y (B) − M̄ − B.

The function F∗∗(B) is strictly concave in B [21, Lemma IV.13].

Thus, it has at most two zeroes, one of which is B0 =
M̄ log(a2 )

log(c2∕ā2 )
.

There is another zero Bz > B0 of F∗∗(B) only if F∗∗(B) is
increasing at B = B0. Such a Bz can be found numerically. We let

B∗ :=

⎧⎪⎨⎪⎩
B0, if F∗∗(B) is non-increasing at B = B0

Bz , otherwise.

We can also generalise our results to the case when there is no
process noise (M̄ = 0). For this scenario, note that a more basic
definition of the function F∗∗(.) is given in Equation (24 b) in
our previous work [21]. From this definition, it is easy to see that
when M̄ = 0, F∗∗(y) := ā2𝜎y − B, where 𝜎 is such that c2𝜎y = B.
Thus, in particular, we see that 𝜎 = 0 when y = B and hence
F∗∗(B) = 0 for all B ≥ 0. Further, note that B0 = 0 if M̄ = 0.
Hence, if M̄ = 0, we can choose B = B∗ = B0 = 0, which then
guarantees asymptotic stability for the plant state to zero.
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